Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Immunity ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38703775

ABSTRACT

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.

2.
J Transl Med ; 22(1): 329, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570798

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs), administered alone or combined with chemotherapy, are the standard of care in advanced non-oncogene addicted Non-Small Cell Lung Cancer (NSCLC). Despite these treatments' success, most long-term survival benefit is restricted to approximately 20% of patients, highlighting the need to identify novel biomarkers to optimize treatment strategies. In several solid tumors, immune soluble factors, the activatory CD137+ Tcells, and the immunosuppressive cell subsets Tregs and MDSCs (PMN(Lox1+)-MDSC and M-MDSCs) correlated with responses to ICIs and clinical outcomes thus becoming appealing predictive and prognostic factors. This study investigated the role of distinct CD137+ Tcell subsets, Tregs, MDSCs, and immune-soluble factors in NSCLC patients as possible biomarkers. METHODS: The levels of T cells, MDSCs and soluble factors were evaluated in 89 metastatic NSCLC patients who underwent ICIs as first- or second-line treatment. T cell analysis was performed by cytoflurimetry evaluating Tregs and different CD137+ Tcell subsets also combined with CD3+, CD8+, PD1+, and Ki67+ markers. Circulating cytokines and immune checkpoints were also evaluated by Luminex analysis. All these parameters were correlated with several clinical factors (age, sex, smoking status, PS and TPS), response to therapy, PFS , and OS . The analyses were conducted in the overall population and in patients treated with ICIs as first-line (naïve patients). RESULTS: In both groups of patients, high levels of circulating CD137+ and CD137+PD1+ T cells (total, CD4 and CD8) and the soluble factor LAG3 positively correlated with response to therapy. In naïve patients, PMN(Lox1+)-MDSCs negatively correlated with clinical response, and a high percentage of Tregs was associated with favorable survival. Moreover, the balance between Treg/CD137+ Tcells or PMN(Lox1+)-MDSC/CD137+ Tcells was higher in non-responding patients and was associated with poor survival. CD137+ Tcells and Tregs resulted as two positive independent prognostic factors. CONCLUSION: High levels of CD137+, CD137+PD1+ Tcells and sLAG3 could predict the response to ICIs in NSCLC patients independently by previous therapy. Combining the evaluation of CD137+ Tcells and Tregs also as Treg/CD137+ T cells ratio it is possible to identify naive patients with longer survival.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , T-Lymphocytes, Regulatory , Lung Neoplasms/pathology , Prognosis , Biomarkers , Immunotherapy/methods
3.
J Transl Med ; 21(1): 626, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37715207

ABSTRACT

BACKGROUND: Fibroblast growth factor receptor (FGFR) gene family alterations are found in several cancers, indicating their importance as potential therapeutic targets. The FGFR-tyrosine kinase inhibitor (TKI) pemigatinib has been introduced in the treatment of advanced cholangiocarcinoma and more recently for relapsed or refractory myeloid/lymphoid neoplasms with FGFR2 and FGFR1 rearrangements, respectively. Several clinical trials are currently investigating the possible combination of pemigatinib with immunotherapy. In this study, we analyzed the biological and molecular effects of pemigatinib on different cancer cell models (lung, bladder, and gastric), which are currently objective of clinical trial investigations. METHODS: NCI-H1581 lung, KATO III gastric and RT-112 bladder cancer cell lines were evaluated for FGFR expression by qRT-PCR and Western blot. Cell lines were treated with Pem and then characterized for cell proliferation, apoptosis, production of intracellular reactive oxygen species (ROS), and induction of senescence. The expression of microRNAs with tumor suppressor functions was analyzed by qRT-PCR, while modulation of the proteins coded by their target genes was evaluated by Western blot and mRNA. Descriptive statistics was used to analyze the various data and student's t test to compare the analysis of two groups. RESULTS: Pemigatinib exposure triggered distinct signaling pathways and reduced the proliferative ability of all cancer cells, inducing G1 phase cell cycle arrest and strong intracellular stress resulting in ROS production, senescence and apoptosis. Pemigatinib treatment also caused the upregulation of microRNAs (miR-133b, miR-139, miR-186, miR-195) with tumor suppressor functions, along with the downregulation of validated protein targets with oncogenic roles (c-Myc, c-MET, CDK6, EGFR). CONCLUSIONS: These results contribute to clarifying the biological effects and molecular mechanisms mediated by the anti-FGFR TKI pemigatinib in distinct tumor settings and support its exploitation for combined therapies.


Subject(s)
MicroRNAs , Humans , MicroRNAs/genetics , Up-Regulation/genetics , Reactive Oxygen Species , Cell Cycle Checkpoints , G1 Phase
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37108276

ABSTRACT

Pembrolizumab, an anti-PD-1 antibody, has been approved as first-line treatment for recurrent or metastatic head and neck squamous cell carcinoma ((R/M) HNSCC). However, only a minority of patients benefit from immunotherapy, which highlights the need to identify novel biomarkers to optimize treatment strategies. CD137+ T cells have been identified as tumour-specific T cells correlated with immunotherapy responses in several solid tumours. In this study, we investigated the role of circulating CD137+ T cells in (R/M) HNSCC patients undergoing pembrolizumab treatment. PBMCs obtained from 40 (R/M) HNSCC patients with a PD-L1 combined positive score (CPS) ≥1 were analysed at baseline via cytofluorimetry for the expression of CD137, and it was found that the percentage of CD3+CD137+ cells is correlated with the clinical benefit rate (CBR), PFS, and OS. The results show that levels of circulating CD137+ T cells are significantly higher in responder patients than in non-responders (p = 0.03). Moreover, patients with CD3+CD137+ percentage ≥1.65% had prolonged OS (p = 0.02) and PFS (p = 0.02). Multivariate analysis, on a combination of biological and clinical parameters, showed that high levels of CD3+CD137+ cells (≥1.65%) and performance status (PS) = 0 are independent prognostic factors of PFS (CD137+ T cells, p = 0.007; PS, p = 0.002) and OS (CD137+ T cells, p = 0.006; PS, p = 0.001). Our results suggest that levels of circulating CD137+ T cells could serve as biomarkers for predicting the response of (R/M) HNSCC patients to pembrolizumab treatment, thus contributing to the success of anti-cancer treatment.


Subject(s)
Head and Neck Neoplasms , T-Lymphocytes , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Head and Neck Neoplasms/drug therapy , Biomarkers
5.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430974

ABSTRACT

Blocking the Programmed Cell Death Protein 1 (PD-1)/programmed death ligand-1 (PD-L1) axis has demonstrated great efficacy in cancer immunotherapy treatment and remains the central modality of immune targeting. To support the rational and tailored use of these drugs, it is important to identify reliable biomarkers related to survival. The role of the soluble form of the PD-L1 (sPD-L1) as a prognostic biomarker related to survival in solid cancer patients treated with immunotherapy has not yet been consistently evaluated. A systematic literature search of original articles in PubMed, MEDLINE and Scopus was conducted. Studies reporting hazard ratios (HRs) with a 95% confidence interval (CI) or Kaplan−Meier curves or individual patient data for overall survival (OS) or progression-free survival (PFS) associated with baseline levels of sPD-L1 in cancer patients undergoing immunotherapy treatment were considered eligible. Twelve studies involving 1076 patients and different tumor types treated with immunotherapy were included in the analysis. High blood levels of sPD-L1 correlated with poorer OS and PFS in cancer patients treated with immunotherapy (HR = 1.49, 95%CI: 1.15, 1.93, p < 0.01, I2 = 77% for OS; HR = 1.59, 95%CI: 1.20, 2.12, p < 0.01, I2 = 82% for PFS). A subgroup analysis highlighted that high levels of sPD-L1 were associated with worse survival in patients affected by NSCLC (HR = 1.81 95%CI: 1.09−3.00, p = 0.02, I2 = 83% for OS; HR = 2.18, 95%CI: 1.27−3.76, p < 0.01, I2 = 88% for PFS). An HR > 1 indicated that patients with low levels of sPD-L1 have the highest rates of OS/PFS. In this meta-analysis, we clarified the role of sPD-L1 in different solid cancers treated exclusively with Immune checkpoint inhibitors (ICIs). sPD-L1 could represent a non-invasive biomarker that is easily dosable in the blood of patients. The pooled data from the selected studies showed that a high circulating concentration of sPD-L1 in cancer patients correlates with worse survival, suggesting that it may be a helpful prognostic biomarker for the selection of cancer patients before immunotherapy, thus improving the efficacy of ICIs and avoiding unnecessary treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , B7-H1 Antigen , Prognosis , Immunotherapy , Immunologic Factors
6.
Int J Mol Sci ; 23(11)2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35682991

ABSTRACT

Despite diagnostic and therapeutic improvements, glioblastoma (GB) remains one of the most threatening brain tumor in adults, underlining the urgent need of new therapeutic targets. Lectins are glycan-binding proteins that regulate several biological processes through the recognition of specific sugar motifs. Lectins and their ligands are found on immune cells, endothelial cells and, also, tumor cells, pointing out a strong correlation among immunity, tumor microenvironment and vascularization. In GB, altered glycans and lectins contribute to tumor progression and immune evasion, shaping the tumor-immune landscape promoting immunosuppressive cell subsets, such as myeloid-derived suppressor cells (MDSCs) and M2-macrophages, and affecting immunoeffector populations, such as CD8+ T cells and dendritic cells (DCs). Here, we discuss the latest knowledge on the immune cells, immune related lectin receptors (C-type lectins, Siglecs, galectins) and changes in glycosylation that are involved in immunosuppressive mechanisms in GB, highlighting their interest as possible novel therapeutical targets.


Subject(s)
Glioblastoma , CD8-Positive T-Lymphocytes , Endothelial Cells/metabolism , Galectins/metabolism , Humans , Immunosuppression Therapy , Lectins, C-Type , Polysaccharides/metabolism , Tumor Microenvironment
7.
EBioMedicine ; 79: 104010, 2022 May.
Article in English | MEDLINE | ID: mdl-35477069

ABSTRACT

BACKGROUND: Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) are innovative small target molecules that, in combination with endocrine therapy, have recently been employed in the treatment of patients with HR+/HER2- metastatic breast cancer (mBC). In this prospective study, we investigate the impact of CDK4/6i on the immune profile of patients with HR+/HER2- mBC. METHODS: Immune cell subsets were analysed using flow cytometry of peripheral blood mononuclear cells (PBMCs) isolated from patients with HR+/HER2- mBC, both before and during treatment. Regulatory T cells (Tregs) were identified using the markers CD4, CD25, CTLA4, CD45RA, and intracellular FOXP3. Monocytic and polymorphonuclear myeloid-derived suppressor cells (M-MDSCs and PMN-MDSCs) and other immune populations were analysed using CD45, CD14, CD66b, CD11c, HLA-DR, CD3, CD8, CD28, CD137, PD1, CD45RA, CCR7, and Ki67. FINDINGS: The percentage of circulating Tregs and M/PMN-MDSCs was significantly downregulated from baseline during CDK4/6i-treatment (p<0.0001 and p<0.05, respectively). In particular, the effector Treg subset (CD4+CD25+FOXP3highCD45RA-) was strongly reduced (p<0.0001). The decrease in Treg levels was significantly greater in responder patients than in non-responder patients. Conversely, CDK4/6i treatment was associated with increased levels of CD4+ T cells and anti-tumour CD137+CD8+ T cells (p<0.05). INTERPRETATION: CDK4/6i treatment results in downregulation of Tregs, M-MDSCs, and PMN-MDSCs, thus weakening tumour immunosuppression. This decrease is associated with response to treatment, highlighting the importance of unleashing immunity in cancer treatment efficacy. These results suggest a novel mechanism of immunomodulation in mBC and provide valuable information for the future design of novel treatments combining CDK4/6i with immunotherapy in other cancer settings. FUNDING: Sapienza University of Rome.


Subject(s)
Breast Neoplasms , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes , Cyclin-Dependent Kinase 4 , Cyclin-Dependent Kinase 6 , Female , Forkhead Transcription Factors , Humans , Immunosuppression Therapy , Leukocytes, Mononuclear , Prospective Studies
8.
Clin Cancer Res ; 28(5): 1027-1037, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34980602

ABSTRACT

PURPOSE: CD137 molecule is expressed by activated lymphocytes, and in patients with cancer identifies the tumor-reactive T cells. In solid tumors, high levels of circulating CD137+ T cells are associated with the clinical response and the disease-free status. Here, we examined the role of the CD137+ T cells in the improvement of patients' selection for immunotherapy treatment. EXPERIMENTAL DESIGN: Peripheral blood mononuclear cells derived from 109 patients with metastatic cancer (66 patients for the identification cohort and 43 for the validation cohort) were analyzed for the expression of CD3, CD4, CD8, CD137, and PD1 molecules before the beginning of anti-PD1 therapy. Twenty healthy donors were used as control. The soluble form of CD137 (sCD137) was also analyzed. The CD137+ T cell subsets and the sCD137 were correlated with the clinicopathologic characteristics. The distribution of CD137+ T cells was also examined in different tumor settings. RESULTS: The percentage of CD137+ T cells was higher in healthy donors and in those patients with a better clinical status (performance status = 0-1, n°metastasis≤2) and these high levels were ascribed to the CD8+CD137+ T cell population. The high frequency of CD137+ and CD8+CD137+ T cells resulted as a prognostic factor of overall survival (OS) and progression-free survival (PFS), respectively, and were confirmed in the validation cohort. High levels of CD3+CD137+PD1+ lymphocytes were associated with a low number of metastasis and longer survival. Instead, the high concentration of the immunosuppressive sCD137 in the serum is associated with a lower PFS and OS. In tumor bed, patients with a complete response showed a high percentage of CD137+ and CD8+ T cells. CONCLUSIONS: We propose the CD137+ T subset as an immune biomarker to define the wellness status of the immune system for successful anticancer immunotherapy.


Subject(s)
Leukocytes, Mononuclear , Neoplasms , CD8-Positive T-Lymphocytes , Humans , Immunotherapy , Leukocytes, Mononuclear/metabolism , Lymphocyte Count , Neoplasms/therapy , Tumor Necrosis Factor Receptor Superfamily, Member 9
9.
Front Oncol ; 11: 755433, 2021.
Article in English | MEDLINE | ID: mdl-34745989

ABSTRACT

Cabozantinib (XL-184) is a multitarget tyrosine kinase inhibitor (TKI) targeting receptor tyrosine kinases (RTKs) involved in oncogenesis and angiogenesis. It is currently the standard therapy for medullary thyroid cancer (MTC), metastatic renal cell carcinoma (mRCC), and hepatocellular carcinoma (HCC). Combination of Cabozantinib with immunotherapy is now a standard treatment in metastatic renal cancer, and its efficacy is being tested in ongoing clinical trial in prostate cancer patients. Here, we report that Cabozantinib may exert an immunostimulatory role by inducing immunogenic stress of prostate cancer cells and directly modulating dendritic cells (DCs). Cabozantinib treatment arrested the cell cycle and triggered immunogenic cell death (ICD) in prostate cancer cells in vitro. Cabozantinib had a direct effect on DCs by the down-modulation of ß-catenin and change in migratory and costimulatory phenotype of the DCs. These results may suggest possible immunomodulatory effects induced by Cabozantinib that could be exploited to optimize patient-tailored immunotherapeutic treatments.

10.
J Pers Med ; 11(7)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34357118

ABSTRACT

Unresectable recurrent and/or metastatic head and neck squamous cell carcinoma (R/M HNSCC) has a very poor prognosis. Soluble immune checkpoints (sICs) are circulating proteins that result from the alternative splicing of membrane proteins and can modulate the immune response to cancer cells. The aim of our pilot study was to determine the possible role of a comprehensive evaluation of sICs in the classification of prognosis and response to treatment in patients with advanced disease. We evaluated several sICs (CD137, CTLA-4, PD-1, PD-L1, PD-L2, TIM3, LAG3, GITR, HVEM, BTLA, IDO, CD80, CD27, and CD28) from peripheral blood at baseline and investigated the association with clinical characteristics and outcomes. A high baseline soluble LAG3 (sLAG3 > 377 pg/mL) resulted in an association with poor PFS and OS (p = 0.047 and p = 0.003, respectively). Moreover, sLAG3 emerged as an independent prognostic factor using an MVA (p = 0.005). The evaluation of sICs, in particular sLAG3, may be relevant for identifying patients with worse prognoses, or resistance to treatments, and may lead to the development of novel targeted strategies.

11.
J Pers Med ; 10(4)2020 11 04.
Article in English | MEDLINE | ID: mdl-33158018

ABSTRACT

Patients with non-small cell lung cancer (NSCLC) have been shown to benefit from the introduction of anti-PD1 treatment. However, not all patients experience tumor regression and durable response. The identification of a string of markers that are direct or indirect indicators of the immune system fitness is needed to choose optimal therapeutic schedules in the management of NSCLC patients. We analyzed 34 immuno-related molecules (14 soluble immune checkpoints, 17 cytokines/chemokines, 3 adhesion molecules) released in the serum of 22 NSCLC patients under Nivolumab treatment and the gut metabolomic profile at baseline. These parameters were correlated with performance status (PS) and/or response to treatment. Nivolumab affected the release of soluble immune checkpoints (sICs). Patients with a better clinical outcome and with an optimal PS (PS = 0) showed a decreased level of PD1 and maintained low levels of several sICs at first clinical evaluation. Low levels of PDL1, PDL2, Tim3, CD137 and BTLA4 were also correlated with a long response to treatment. Moreover, responding patients showed a high proportion of eubiosis-associated gut metabolites. In this exploratory study, we propose a combination of immunological and clinical parameters (sICs, PS and gut metabolites) for the identification of patients more suitable for Nivolumab treatment. This string of parameters validated in a network analysis on a larger cohort of patients could help oncologists to improve their decision-making in an NSCLC setting.

SELECTION OF CITATIONS
SEARCH DETAIL
...